中文字幕在线流畅不卡精品,在线视频综合站,国产精品137页,亚洲制服丝袜中文字幕在

<td id="urspe"></td>
<small id="urspe"><menuitem id="urspe"></menuitem></small><small id="urspe"><sup id="urspe"></sup></small>

  • <small id="urspe"></small>
    <sub id="urspe"><menu id="urspe"><samp id="urspe"></samp></menu></sub>

    七年級數(shù)學(xué)手抄報內(nèi)容文字

    發(fā)布時間:2017-02-16  編輯:友念 手機(jī)版

      數(shù)學(xué)存在于我們的生活中,下面小編為大家整理了一些關(guān)于七年級的數(shù)學(xué)手抄報,大家一起來看看吧。

    七年級數(shù)學(xué)手抄報01

    七年級數(shù)學(xué)手抄報02

    七年級數(shù)學(xué)手抄報03

      七年級數(shù)學(xué)公式

      乘法與因式分解

      a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

      三角不等式

      |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

      |a-b|≥|a|-|b|-|a|≤a≤|a|

      一元二次方程的解根與系數(shù)的關(guān)系

      -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

      X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理

      判別式

      b2-4ac=0注:方程有兩個相等的實根

      b2-4ac>0注:方程有兩個不等的實根

      b2-4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根

      三角函數(shù)公式

      兩角和公式

      sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      倍角公式

      tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      半角公式

      sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

      和差化積

      2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

      某些數(shù)列前n項和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3


    網(wǎng)友評論